Preview

Economics, taxes & law

Advanced search

Forecasting Federal Budget Revenues Using MIDAS Models

Abstract

The relevance of the work lies in the need, in conditions of increasing instability and political tension, to promptly make managerial decisions in the field of public finance with a focus on predictive models that are adjusted in real time. The subject of the study is the relationship between Russian economic indicators and their use for forecasting federal budget revenues. The purpose of the work is to forecast federal budget revenues through the use of MIDAS models. The main research methods were the analysis of the interrelationships of economic indicators, comparison of the results obtained using MIDAS models. The result of the work was the choice of a model for forecasting federal budget revenues, which is based on multifrequency data that allows for a high degree of reliability in real time, taking into account business activity and the external economic situation. Using the results of this study will improve the accuracy of forecasting federal budget revenues. It is concluded that the MIDAS model will further provide the opportunity to make quarterly adjustments taking into account changes in the market situation.

About the Author

O. V. Borisova
Financial University, Moscow, Russia
Russian Federation

Olga V. Borisova — Cand. Sci. (Econ.), Assoc. Prof., Senior Researcher at the Institute for Research on Socio-Economic Transformations and Financial Policy; Assoc. Prof. of the Department of Corporate Finance and Corporate Governance



References

1. Uras N, Marchesi L, Marchesi M, Tonelli R. 2020. Forecasting bitcoin closing price series using linear regression and neural networks models. PeerJ Computer Science. DOI: 10.7717/peerj-cs.279

2. Prabhu B.V., Dakshayini M. Performance analysis of the regression and time series predictive models using parallel implementation for agricultural data. Procedia Computer Science. 2018;132:198–207.

3. Серков Л.А. Критический подход к анализу проблем динамических стохастических моделей общего равновесия. Экономика и бизнес: теория и практика. 2015;(8):122–126. Serkov L.A. A critical approach to the analysis of problems of dynamic stochastic models of general equilibrium. Ekonomika i biznes: Teoriya i praktika = Economics and Business: Theory and practice. 2015;(8):122–126. (In Russ.).

4. Debortoli D., Galı J. Monetary policy with heterogeneous agents: insights from tank models. Universitat Pompeu Fabra: Working papers; 2017, pp. 1–38.

5. Storm S. Cordon of Conformity: Why DSGE models are not the future of macroeconomics. International Journal of Political Economy. 2021;50(2):77–98.

6. Ozkan N. Government budget predictions with mixed frequency analysis. dissertation of doctor of philosophy. Chapel Hill, University of North Carolina; 2014. р.102.

7. Pedregal D., Perez J. Should quarterly government finance statistics be used for fiscal surveillance in Europe? International Journal of Forecasting. 2010;26:794–807.

8. Paredes J., Pedregal D., Perez J. A quarterly fiscal database for the euro area based on intra-annual fiscal information. ECB working paper series. 2009;1132:1–47.

9. Asimakopoulos S., Paredes J., Warmedinger T. Forecasting fiscal time series using mixed frequency data. ECB working paper series. 2013;1550:1–49.

10. Ghysels E., Ozkan N. Real-time forecasting of the US federal government budget: A simple mixed frequency data regression approach. International Journal of Forecasting. 2015;31:1009–1020.

11. Макеева Н.М., Станкевич И.П. Наукастинг элементов использования ВВП России. Экономический журнал ВШЭ. 2022;26(4):598–622.

12. Makeeva N.M., Stankevich I.P. The science of the elements of the use of Russia’s GDP. Ekonomicheskij zhurnal VSHE = HSE Economic Journal. 2022;26(4):598–622. (In Russ.).

13. Третьяков Д.В., Фокин Н.Д. Помогают ли высокочастотные данные в прогнозировании российской инфляции? Вестник Санкт-Петербургского университета. Экономика. 2021;37(2):318–343. Tretyakov D.V., Fokin N.D. Do high-frequency data help in forecasting Russian inflation? Vestnik SanktPeterburgskogo universiteta. Ekonomika = Bulletin of St. Petersburg University. Economy. 2021;37(2):318–343. (In Russ.).

14. Борисова О.В., Комиссарова А.В. Модели прогнозирования бюджетных доходов в России. Финансовая жизнь. 2023;(3):53–58. Borisova O.V., Komissarova A.V. Models for forecasting budget revenues in Russia. Finansovaya zhizn’ = Financial life. 2023;(3):53–58. (In Russ.).

15. Станкевич И.П. Сравнение методов наукастинга макроэкономических индикаторов на примере российского ВВП. Прикладная эконометрика. 2020;59:113–127. Stankevich I.P. Comparison of the methods of science of macroeconomic indicators on the example of Russian GDP. Prikladnaya ekonometrika = Applied econometrics. 2020;59:113–127. (In Russ.).

16. Andreou E., Ghysels E., Kourtellos A. Should macroeconomic forecasters use daily financial data and how? Journal of Business & Economic Statistics. 2013;31:240–251.


Review

For citations:


Borisova O.V. Forecasting Federal Budget Revenues Using MIDAS Models. Economics, taxes & law. 2024;17(6):89-100. (In Russ.)

Views: 11


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-849X (Print)
ISSN 2619-1474 (Online)